Vulnerability Testing Against a Predominately
UNIX-based Network (DRAFT)

Jeffrey S. Marker, CISSP
April 22, 2003

1 Introduction

Network vulnerability testing seems to be a self-describing term. When we
perform this type of testing, we are interested in where and how hosts may
be attacked via the network. We are concerned about potential vulnerabil-
ities, not with exploiting these vulnerabilities. Exploiting vulnerabilities to
demonstrate their danger is the providance of penetration testing, where the
goal is to demonstrate how a networked host can be compromised.

We are limiting our discussion to “predominately UNIX” networks be-
cause we wish to address TCP/IP testing. We do not want to discuss Net-
BIOS or other non-TCP/IP protocols. The general methodology described
herein should be applicable to non-TCP/IP protocols, although the tools
may be different.

Network vulnerability testing is valuable for a number of reasons. The
initial tests will help the systems, network, and security administrators de-
velop a picture of what is present on the network. Subsequent tests can help
map changes to the network. Regular testing can help discourage the run-
ning of unauthorized services. Vulnerability testing also helps demonstrate
the effectiveness of current security measures, and the reports from the tests
can be used to help evaluate, and make a case for, enhanced security mea-
sures. And, finally, there is always the remote chance that one might detect
compromised hosts on the tested network!

Vulnerability testing should not be performed to

"Vulnerability testing should not be thought of as a substitute for intrusion detection
technologies.

1. Find hosts on the network to compromise,

2. Try to demonstrate that Biff down the hall does not know how to secure
a computer.

The first of these reasons is of questionable legal and ethical standing, while
the latter is simply juvenile.

2 Preparing for the testing

Network connectivity

To perform the vulnerability testing, we need to have at least one network
connection. This can be either “internal” — inside the security perimeter —
or “external.” Ideally, we would be able to have both an internal and an
external connection, so we can compare the views of an external and internal
threat.

External network connection

Simply put, the purpose of the external network connection is to allow us to
see what an “outsider” will see during an attack. This connection should be
outside of whatever perimeter security is in place for the network to be tested.
Also, all automatic trust relationships between the testing platform and the
hosts to be tested should be severed for the duration of the testing. This
means that SSH keys, .rhosts, /etc/hosts, .netrc files and the like need to
be checked to make certain that they are not allowing the testing platform
access that other hosts or users can not be expected to have. Failure to
sever these trust relationships may ultimately result in false-positive reports,
which will make it appear that the network being tested is less secure than
it actually is.

Because remote network vulnerability testing can be rather network in-
tensive, it is best if the external network connection has a lot of bandwidth.
This can be accomplished via the sundry commercial broadband solutions?,
by locating the testing platform at the site of a business partner, or by lo-
cating the testing platform at a remote site.

2such as DSL or cable modems.

Internal network connection

The internal network connection is used for the internal testing. This allows
us to see what “insiders” see, and to be able to make some value judgements
regarding the effectiveness of the perimeter security. This connection should
be inside the security perimeter of the network we are testing. Unlike the
external testing, we do not need to sever our trust relationships, because it
can be assumed that trust exists with other hosts — and other users — on the
network.

Testing platform

The tools we will use to perform our testing are all UNIX based. Conse-
quently, the testing platform will need to be able to run a version of UNIX
as its operating system.

Tools
nmap

nmap is primarily a port scanner, rather than a vulnerability tester per se.
We will use this tool in both the external and internal testing to determin
which TCP and UDP services are listening on the tested hosts. We will also
make use of nmap’s operating system detection feature to make guesses at
what operating systems are being run on the tested network. Finally, we will
use some of nmap’s scanning variations in the external testing to map out
the perimeter security.
nmap can be obtained from http://www.insecure.org/nmap/.

SATAN

SATAN is the grand old man of network vulnerability testers, being released
in 1995. Because of its age, it is often called obsolete. However, SATAN
uses it’s own method for probing services, which gives us another view of the
network. Additionally, it was written with modularity in mind, so enhanc-
ing SATAN with localized tests is well-documented® and relatively straight-
forward.

SATAN can be obtained from http://www.porcupine.org/satan/.

3See, for example, Protecting Networks with SATAN by Martin Freiss.

SARA

SARA is a third-generation decendant of SATAN, with all of the advance-
ments one might expect to find. It has hooks for using nmap for service
scanning, an up-to-date vulnerability database, and a well-developed report
writing feature.

SARA can be obtained from http://www-arc.com/sara/.

Nessus

Nessus is another modern vulnerability scanner. Unlike the SATAN family,

it uses it’s own console for configuration and reporting?, and is client-server

based. Also, Nessus makes it easy to select precisely which tests to run,

whereas the SATAN family selects its tests based upon a “scanning level.”
Nessus can be obtained from http://www.nessus.org/.

Whisker

Whisker tests http servers for vulnerabilities. It will, therefore, only be used
if hosts on the network are found to be running http servers.?
Whisker can be obtained from http://sourceforge.net/projects/whisker/.

House-keeping

Make a directory for the results of the tests. For the examples herein, we’ll
call that example.com_vuln_test. Under that directory, we will make external
and internal, so as to be able to better organize the different tests.

Protection

When we perform the tests, there are two items we need to protect: ourselves
and the data the testing generates. We need to protect ourselves from “real
world” ramifications, such as letters of reprimand, demotion, firing, and/or
various legal actions. We need to protect both the confidentiality and the
integrity of the data.

4The SATAN family uses a Web browser.
5Note that this is not the same thing as “hosts listening on TCP port 80.

We protect ourselves by obtaining approval to perform the testing before
we begin. In some organizations, this includes obtaining permission to pos-
sess the above mentioned tools®. Regardless of the organization, however,
pre-approval from the network owner must be obtained. This means getting
approval from management, not the network administrators. We want to get
the approval from as far up the food chain as is possible.

We protect the data via file permissions, encryption, and labeling. Our
file permissions should be as restrictive as is possible, allowing only the owner
access’. We should also encrypt the data while it is stored®. Additionally, if
the final report is to be transferred electronicly, it should be done so in an
encrypted form®. Finally, the report should be properly labeled'®. This helps
prevent accidental disclosure via honest mistake, as well as encouraging the
authorized recipients to be more protective of the document.

3 Testing

One important rule is to not launch denial of service attacks against pro-
duction networks during “normal” production hours'!. Some of the tests
the various tools perform have the potential to cause certain network ser-
vices to “go away.” Also, some of the tools have to potential to perform a
netwrk bandwidth denial of service, either intentionally via certain tests or
unintentionally because too many tests are being run at once.

6Some organizations have strict policies regulating which job functions are allowed to
possess “cracker” tools.

"It is possible that the group might be allowed access, if the testing and analysis is
being performed by a team.

8The discussion of cryptographic tools is beyond the scope of this document. However,
we have used both Matt Blaze’s cfs (http://www.crypto.com/papers/cfs.pdf) and gnupg
(http:/ /www.gnupg.org/) with success.

9Methods of encrypting electronic mail are many — one might start with S/MIME or
gnupg. Methods of encrypting data sent to network printers are not as well documented.

1%je. “Confidential: disclose and distribute to Jiffy Script, Inc. employees having a need
to know,” or “Ultra secret.”

" The windows when hosts or networks can be taken down for maintenance will be
defined in the organization’s policies.

3.1 External testing

If perimeter security is in force on the network to be tested, it is possible
that we are able to know what security policies are being enforced on the
perimeter. This “insider” knowledge will modify the nmap portion of the
test, as we can avoid a comprehensive port scan, and, instead, scan only
those services which are allowed to pass through the perimeter.

Open service detection with nmap

We begin the testing with nmap, because that will give us a picture of open
services. First, we will will probe all TCP ports, via

% nmap -sT -p 1-65535 -PO -n -oA tcp_services -v \
-iL hosts_to_scan

This will take quite some time to run, especially if the perimeter security uti-
lizes rule that drop, rather than reject, unwanted packets. When it finishes,
however, we will have three files called tcp_services.gnmap, tcp_services.nmap,
and tcp_services.xml in the example.com_vuln_test/external directory.

Next, we will probe all UDP ports, via

% nmap -sU -p 1-65535 -PO -n -o0A udp._services -v \
-iL hosts_to_scan

As is the case with the TCP probe, this test will take quite a while to run.
When is is finished, we will have files called udp_services.gnmap, udp_services.nmap,
and udp_services.xml in the example.com_vuln_test/external directory.

Statistics, Research, and Test Creation

The next step is to create a frequency list of open services. This can be ac-
complished by using the Perl-script service_freq.pl (Figure 2) in the following
fashion!?:

% service freq.pl tcp_services.xml | sort -rn +1

12There are, of course, other methods of accomplishing this.

This will provide a list of TCP services, sorted in reverse numerical order by
the number of times they appear on the network. A sample of such a list can
be found in figure 1 on page 7. Running

% service freq.pl udp_services.xml | sort -rn +1

will produce a similar list of UDP services.

tep-22: 30
tcp-443: 2
tep-80: 2
tcp-53: 2
tep-25: 2
tep-6715: 1
tep-6667: 1
tep-31337: 1
tep-23: 1

Figure 1: Sample TCP service frequency list

We examine the frequency lists for services we know should be running
— such as tcp-22'3 and tcp-80'* in the sample!® — and for services we know
should not be running — such as tcp-6667'% in the sample. In the process, we
will probably find services that are listed neither in /etc/services or in the
tcp_services.nmap or udp_services.nmap files. These should be researched!”,
as should any named services that are unfamiliar or unexpected.

The vulnerability testing programs we are using will likely have tests for
most, if not all, of the services nmap shows us. It is important to remember,
however, that information security is a moving target. The tools we use can
only find vulnerabilities for which they have tests, and vulnerabilites, as well
as their corresponding exploits, are ever changing. Thus, it is possible, if
not likely, that some services nmap tells us are running will not have tests

13GSH.

MUHTTP.

I5Figure 1 on page 7.

I6TRC.

17See appendix B for hints on how to research mysterious services.

included in the standard package. Consequently, we may need to search the
Internet for tests, or we may have to write our own'8.

Once we have tests to check for vulnerabilities on all of the services re-
ported running, we’re ready to begin the vulnerability testing proper.

Each of the tools we are using can be run from either the GUI or from
the command-line in a “batch” mode. We use the latter because because we
feel that doing so leaves more resources available for the tools, and because
doing so makes running the tools from a shell-script an intuitive next step.'

It it tempting to run the tools in parallel, so as to complete the initial
testing phase as quickly as is possible. This temptation must be resisted, lest
the testing become a DOS attack against either the network being tested or
the network performing the testing. This will mean that the testing will take
longer to be performed.

3.2 Being tricky

If we are not privy to the perimeter security rules, we can make use of nmap’s
built-in tricks to test whether the perimeter security is a smoke-screen.

3.3 Internal testing
4 Analyze

4.1 False positives

Many of the tools only check banners — they don’t actually test the vul-
nerability. Because many network daemons allow the administrator to use
arbitrary headers, it may be necessary to verify the results of such tools by
hand, either exhaustively or by examining a random sample.

4.2 False negatives

The tools we use are only as knowledgeable as their vulnerability databases
are up-to-date. Fortunately, most of these tools allow direct review of all of

18This is left as an exercise to the reader, although each of the tools does contain some
advice on how to write tests. That’s why we use open source.

9Running the tools can take a long time, and sitting and watching a status bar is less
than stimulating.

the responses to their tests, without the filter of the front-end.

4.3 Comparison between external and internal tests

4.4 Danger signs

5 Conclusions

A service_freq.pl

#!/usr/bin/perl

read nmap XML files and produce a list of services
and their frequency

while (<>) {
change "open" to "filtered" or "closed" if you are
interested in those counts
if (/port protocol=\"(\w+)\" portid=\"(\d+)\"><state state=\"open\"/) {
$sc{"$1-82"}++;
}
}

foreach (keys %sc) {
print "$_: $sc{$_}\n";
}

Figure 2: service_freq.pl

B Researching mysterious services

There are numerous lists of services common to various TCP ad UDP ports.
Some are more complete than others, some focus entirely on what “trojan
horses” run on which ports; some are updated regularly; some have remained

static for years. As with most information sources on the Internets, your
milage may vary.

One relatively complete listing is the searchable “port report” at DShield.org,
which really takes its descriptions from Neohapsis and the CVE. Because the
list is searchable, one can quickly find the the information regarding the port.
For example, the TCP service 31337 in the sample frequency list probably
has no listing in /etc/services, so we would go to www.dshield.org and query
that service by point our browser at

http://www.dshield.org/port_report.php?port=31337

C What is not being tested

We have been describing network vulnerability testing, not penetration test-
ing or the art of performing a security audit. It is important to note the
general areas we do not test, if only to remind readers that the journey of
security is never complete.

C.1 The system level

This method of testing does not examine system-level security issues. We do
not examined the systems for weak static passwords?’. We do not examined
file-system permissions. We do not examine /etc/hosts or sundry .rhosts
files for sanity, except for the “trust” tests performed for the root and/or bin
users. We do not examine the sudo(8) configuration file for sanity. And, fi-
nally, we do not examine setuid permission, program versions, shared-library
versions, or operating system patch levels, except as they may be revealed
by network daemons.

Please note again that the list of system-level issues given in the previous
paragraph is not inclusive, but is, instead, intended to provide a starting
point, as well as to stress the complexity of system-level security.

20Tt can be argued that all static passwords are weak in the modern age.

10

C.2 Physical security

Physical security is often over-looked when an organization examines its se-
curity stance. The reasons for this are many, but included in them is the
misbegotten believe that information security is only about firewalls, virus
scanning, and intrusion detection — in other words, that information security
is entirely in the “virtual” world.

C.3 Clandestine gathering
C.4 Social engineering

C.5 Source code reviews

11

